
Velocity statistics in dissipative, dense granular media

David J. Bray, Michael R. Swift, and P. J. King
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

�Received 21 March 2007; published 25 June 2007�

We use a two-dimensional random-force model to investigate the velocity distributions in driven granular
media. In general, the shape of the distribution is found to depend on the degree of dissipation and the packing
fraction but, in highly dissipative systems, the velocity distributions have tails close to exponential. We show
that these arise from the dynamics of single particles traveling in dilute regions and influenced predominantly
by the random force. A self-consistent kinetic theory is developed to describe this behavior.
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Driven granular materials are simple examples of non-
equilibrium statistical systems. Recently, there has been
much interest in characterizing the velocity statistics of such
systems �1,2�. It has been observed both experimentally and
in simulation that the velocity distributions deviate strongly
from the Maxwell-Boltzmann statistics applicable in thermal
equilibrium. However, to date, no consistent picture has
emerged.

Much of the previous work has concentrated on excited
systems in which the granular bed is fluidized. Under such
conditions, non-Gaussian behavior has been observed in ex-
periments which include granular flows �3�, vibrated beds
�4�, and sheared �5� and electrostatically driven �6� systems.
Non-Gaussian velocity distributions have also been observed
in simulation �7,8� and several kinetic theories have been
developed to explain this behavior �9–11�. One approach
uses uniform heating of the grains and collisional dissipation
to obtain a distribution for the velocities v of the form
P�v��exp�−��v�1.5� �9�. Alternatively, a Maxwell model for
which the collision rate is particle velocity independent of-
fers an approximate solution of the form exp�−��v�� in the
tails of the probability distribution �11�.

One of the main assumptions of these kinetic theories is
that the system is spatially homogeneous. In many real sys-
tems, the inelastic nature of particle collisions induces inho-
mogeneity which may lead to clustering. That there is a con-
nection between bed density and velocity statistics is
suggested by the observation that the distributions appear to
vary with the height at which they are measured in a verti-
cally vibrated granular bed �12�. However, how dissipation,
bed density and spatial inhomogeneity influence the velocity
distribution is still unclear.

In this Brief Report we discuss the velocity statistics in
dissipative, dense granular media. We consider a simple two-
dimensional random-force model for a collection of inelastic
particles. In the limit of high dissipation, this model exhibits
exponential velocity tails for a wide range of the parameters.
Within this model, we show that it is the motion of particles
moving in less dense regions and influenced predominantly
by the random force which leads to the exponential tails. We
develop a self-consistent single particle kinetic theory to de-
scribe the behavior of the high energy particles.

Our simulations use two-dimensional soft-sphere molecu-
lar dynamics to investigate the particle motion. The interac-
tions between particles are modeled using a linear spring-

dashpot force in the normal direction and a tangential sliding
frictional force. For simplicity, particle rotation is ignored.
The spherical grains were chosen to have a diameter of
3 mm and a density of 2500 K g m−3. The spring constant
was chosen to be 5000 Nm−1 while the friction coefficient �
was chosen to be either 0 or 0.5 and the coefficient of resti-
tution � was varied within the range 0.05 to 0.95.

To excite the system, each particle is influenced by a ran-
dom force �13�. The model may be thought of as a method of
describing a single layer in a dense three-dimensional granu-
lar bed, the random force representing the interactions be-
tween different layers induced by vibration �14�. The N par-
ticles are assumed to move on a square horizontal plane with
sides of extent L=0.2 m. The particles are confined by re-
flective walls, the wall-particle restitution coefficient being
the same as the particle-particle coefficient. Collisions dissi-
pate energy, while energy is added through the random exci-
tation of each particle. The equation of motion along the
plane for particle i is therefore

m
dvi

dt
= �

j�i

Fi,j + �i�t� , �1�

where m is the particle mass, Fi,j is the interaction force
between particles i and j, vi� the particles’ velocity compo-
nent in Cartesian direction �, and �i��t� is Gaussian white
noise with correlator ��i��t�� j��t��	=2D��t− t���i,j��,�. We
set the overall velocity scale to a realistic magnitude by
choosing D=1�10−8 N2 s.

We have investigated the velocity statistics for a wide
range of parameter values. To remove the fluctuations of the
centre of mass of the system, the velocity of the centre of
mass is subtracted from each particle’s velocity when calcu-
lating the statistics. In general, the distributions may deviate
strongly from Gaussian. However, there is not a simple form
that fits all the distributions but rather a set of curves that
become closer to pure exponentials in the limit of high dis-
sipation and packing fraction �8�. In Fig. 1, the solid lines
show the velocity statistics corresponding to two extreme
cases. Figure 1�a� is for a low dissipation system, having a
smaller number of particles, a coefficient of restitution of
0.95 and no tangential friction. The velocity statistics are
close to Gaussian in this case. Figure 1�b� shows the corre-
sponding data for a highly dissipative system. Here we have
simulated a large number of particles, each with a coefficient
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of restitution of 0.1 and a friction coefficient of 0.5. In this
case the distribution is far from Gaussian and exhibits expo-
nential high velocity tails. In general we find that, as the
number of particles increases, the velocity distributions be-
come closer to exponential. Similarly, reducing � or increas-
ing the friction coefficient � also forces the velocity distri-
bution to become exponential in the tails.

We now ask, within these highly dissipative systems, how
do the particles with the highest speeds get their energy?
There are two possible mechanisms. The particles could gain
their energy either from the random force or from particle-
particle collisions. To determine which, if either, of these two
possibilities dominates, we consider the post-collisional ve-
locity statistics, shown by the dotted curves in Fig. 1. These
curves are generated by only binning the velocities of par-
ticles that have just had a collision in the previous timestep.
Figure 1�a� shows that for the weakly dissipative system
there is very little difference between the post-collisional ve-
locity distribution and the full velocity distribution. How-
ever, in the highly dissipative case, Fig. 1�b�, there is a clear
distinction between the distributions in the tails; the post-
collisional velocity distribution falls steadily away from the
full distribution as the velocity increases. In the limit of ex-
tremely high velocities, the post-collisional velocity of these
particles becomes increasingly irrelevant. This implies that
the the high velocity tails are generated by particles that are
driven predominantly by the random force. Can we therefore
understand the high velocity tails of the highly dissipative
systems by focusing on individual particles?

To do this, we have investigated a simple single-particle
model which is able to reproduce the high energy tails of the
velocity statistics. We represent a particle moving between
collisions by a particle traveling within a circle of radius l.
This distance represents the free path length. The particle
experiences a random force and moves until it reaches the
boundary circle. The particle is then placed at rest in the
centre of a circle with a new radius l�, chosen from the
probability distribution of free paths obtained from the 2D
many-body simulations. The process is repeated very many
times and the velocity distribution is determined by sampling
the instantaneous velocity of the particle uniformly in time
�15�.

This simple model is expected to capture the physics of
the high velocity particles driven solely by the random force.
The main approximation used is that the particle starts from
rest each time. This approximation becomes more valid in
strongly dissipative systems where we have shown the post-
collisional velocity to be increasingly irrelevant in the tails of
the distribution. A second approximation in the single par-
ticle model is that the particle is stopped the first time it
reaches a distance l. Again, this approximation becomes
more valid as the particle’s velocity increases.

Two distributions of free paths between collisions that we
have used in the single particle model are shown in Fig. 2;
they have been obtained from the many-body simulations by
measuring the distance a particle has moved between two
consecutive collisions with other particles. The system pa-
rameters are the same as have been used to obtain Figs. 1�a�
and 1�b�. Figure 3 compares the results for the single particle
model with the velocity distributions obtained using the full
2D many-body simulations. The comparison made is for the
same sets of parameter values as for the curves shown in
Figs. 1 and 2. For the highly dissipative system, the slopes of
the high velocity tails given by the two models are almost
identical. However, the model gives different predictions at
low velocities, as is expected. Consequently, normalized
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FIG. 1. The velocity distribution for the 2D simulation of a
system of N particles with diameter d=3 mm, contained in a square
region with L=0.2 m. The solid lines show the full velocity distri-
bution while the dots show the post-collisional velocity statistics, as
described in the text. The parameter values we have used to gener-
ate the two figures are �a� N=1500, �=0.95, �=0.0 and �b� N
=3500, �=0.1, �=0.5.
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FIG. 2. The distribution of free paths between collisions l in the
2D many-body simulation for particles of diameter 3 mm, in a sys-
tem with L=0.2 m and N=1500, �=0.95, �=0.0 �upper� and N
=3500, �=0.1, �=0.5 �lower�. The line fit is a function of the form
Al−	 exp�−Bl�� with �=2/3. The inset shows the velocity statistics
for a single, randomly forced particle with noise strength D=1
�10−8 N2 s contained within a circle of radius l=0.01 m. The solid
line shows a Gaussian fit to the data.
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curves would not fall on top of each other in the high veloc-
ity limit. To emphasize the very similar slopes of the distri-
butions at high velocities we have displaced the curves ver-
tically, corresponding to slightly different normalizations. It
is seen that the agreement between the two models is remark-
ably good over many decades of P�v�. For completeness, we
show as an inset in Fig. 3 the corresponding comparison for
the low dissipation system. In this case the single particle
model clearly fails, as is to be expected.

The numerical procedure of the single particle model can
be described analytically by the following integral equation:

P�v� = 

0




Q�v,l�Pl�l�dl . �2�

Here P�v� is the velocity distribution, Pl�l� is the distribution
of free paths between collisions, l, obtained from the 2D
simulation �Fig. 2� and Q�v , l� is the velocity distribution for
a randomly accelerated particle within a circle of fixed radius
l. Equation �2� states that the probability distribution of ve-
locities for a collection of particles can be obtained from the
velocity distributions for a single particle contained in a
circle of radius l, weighted by the probability of a free path
of length l occurring. The velocity distribution can be accu-
rately constructed in this way over many decades of P�v�, as
we have already shown numerically in Fig. 3.

To enable an analytic treatment of Eq. �2�, the probability
distribution Q�v , l� can readily be obtained from simulation
of a single particle within a fixed-size circle. The data can be
fitted asymptotically to a Gaussian of the form

Q�v,l� � exp�− cv2/l2/3� , �3�

as is shown in the inset of Fig. 2. Here c is a numerical
constant which depends upon D and m. If we make the gen-
eral assumption that the tails of the velocity and free path
probability distributions have the forms P�v��exp�−a�v���

and Pl�l��exp�−bl��, we may use Eqs. �2� and �3� to obtain
the relationship between � and �,

� =
6�

3� + 2
. �4�

This relationship does not depend upon the constants a, b
and c or on any nonexponential prefactors to P�v� and Pl�l�.

In order to determine � and � explicitly, we apply a
simple generalization of kinetic theory to the case of a ran-
domly accelerated particle. We have shown that the high ve-
locity tails arise from single particle motion driven by the
random force. In order for this to occur, a particle must have
free space to move. Consequently, the high velocity particles
are found in less dense regions of the system, as we have
confirmed by visual inspection. We suppose that within a
dilute region, the system behaves as a homogeneous dilute
“gas” of randomly accelerated particles, and that correlations
between these particles can be ignored.

Let S�l� be the probability that the particle has survived a
distance l without colliding with any other particle. The
probability of colliding within some small distance dl equals
the time taken to cross the region multiplied by the mean
collision rate. Consequently, S�l� obeys the equation

S�l + dl� = S�l��1 −
f

v
dl� , �5�

where v is the velocity of the particle and f is the mean
collision frequency. If v is constant, Eq. �5� can be solved to
give simple exponential decay as in standard kinetic theory
�16�. However, for a randomly accelerated particle, v is no
longer constant. The typical particle velocity grows with
time as t1/2 while the typical distance traveled over this time
grows as t3/2. Substituting v� l1/3 into Eq. �5� gives the
stretched exponential S�l��exp�−bl2/3�, where b is a con-
stant. The corresponding distribution of free paths between
collisions Pl�l� is related to S�l� by Pl�l�=−dS /dl, and is
therefore also a stretched exponential with exponent �
=2/3. This result, together with Eq. �4�, implies that �=1.
Both these values are consistent with the numerical simula-
tion results for the higher dissipation systems described
above. Figures 1�b� and 3 show, for the high dissipation sys-
tem, exponential behavior of the velocity distribution corre-
sponding to �=1, while in Fig. 2 the related data for the free
path distribution have been fitted to a stretched-exponential
with �=2/3, the continuous line.

The agreement between the many-body simulations and
the single particle model suggests the following mechanism
for generating non-Gaussian velocity distributions in dense
dissipative granular systems. The high velocity particles
achieve their velocity predominantly through the action of
the noise within less dense regions. The noise induced accel-
eration gives rise to stretched exponential distributions for
the paths between collisions. This in turn leads to non-
Gaussian behavior of the velocity distribution.

To conclude, we have demonstrated that a two-
dimensional random force model exhibits exponential behav-
ior of the velocity distribution in the high dissipation limit.
We have identified the key physical mechanisms responsible
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FIG. 3. Comparison of the single particle model �line� against
the 2D many-body simulation for the highly dissipative system
�crosses�. Here we have scaled the single particle results vertically
so that they overlay that of the simulation, as described in the text.
The parameters are those used in Fig. 2. The inset shows the cor-
responding comparison for the weakly dissipative case. The curves
are of quite different form and no attempt has been made to scale.
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for the high velocity tails and have developed a self-
consistent kinetic theory able to describe this behavior. The
success of this theory results from the separation of velocity
scales between the highly active particles and the slow mov-

ing dense background of particles. It will be interesting to
investigate whether a similar mechanism is at work in the
wide range of driven granular systems that exhibit anoma-
lous velocity statistics.
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